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PLANS OFFICE TECHNICAL REPORT NO. 7

A General Least Squares Formuiation for Tracking System

Accuracy Analvsis - With Application to the

Woomera Station Data of MA-6 Mission

by

Howard H. Brown

1. Summary

A general least squares procedure has been formulated for the
analysis of a tracking system's accuracy based on examination of
the range, azimuth, and elevation outputs of the tracking system.
The least squares process for calculating the standard deviations
of range errors, azimuth errors, and elevation errors is presented
in rFarct 11,

At the time at which this study was initiated, the data of
the Woomera FPS-16 station was of particular interest because the
burning of the last powered flight stage of the Centaur mission
terminated in a region over this station. The accuracy of measured
values of range, azimuth, and elevation as well as time derivatives
of these variables were of natural interest for the injection

problem. For these reasons the data taken on the MA-6 mission
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at the Woomera station has been used to illustrate the application
of the derived least squares method.

Typical standard deviatioﬁs of range errors, azimuth errors,
and elevation errors are presented in Figures 1, 2, and 3. These
figures show that computed standard deviations are strongly dependent
on the degree of least squares fit of range, azimuth, or elevation.
In general, only fourth or fifth degree polynomials produced suitable
fittings for these variables, based on the criterion that the
computed standard deviations of the errors changed little in going
from fourth to fifth degree least squares fit. The strong dependence
of the standard deviations O; s CEi » and CE; on the shapes of
range, azimuth, and elevation vs. time curves is indicated in
Figure 4.

it must be expected that some mission flights will yield
radar data requiring for analysis higher degree least squares
polynomials than those used in this study.

Part I11 develops a process for calculating the standard
deviations of range rate errors, azimuth rate errors, and elevation
rate errors for a system in which range rate, azimuth rate, and
elevation rate are computed from the time derivatives of the

corresponding least squares polynomials used to fit range, azimuth,
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and clevation. Since the precess invelves considerable use of the
concepts of variancev, covariance, and expectation of random variables,
a review of the necessary ccncepts and operations is given in

Part III, subheading 1. Average standard deviations of range rate
errors, azimuth rate errors, and elevation rate errors obtained

by these methods are presented in Figures 10, 11, and 12. The
variations of the various standard deviatjons J. , Ug , and O—é

o

with time over a one minute interval are shown in Figures 5, 6, 7,

8, and 9,

The results in Figures 10, 11, and 12 indicate that quite
reasonable values of O"._ ’ U& » and U'é are obtained when
the corresponding least squares polynomials for range, azimuth,
and elevation are of the fourth or fifth degree.

Tk

h¢ meinods of Part 111 for calculating G—F R 0; , and O'é

apply only when the rate variables » & , and E, are

produced as indicated in the text.
All of the calculations of Part III are based on taking F ,
X , and £ from least squares fitting over a one minute interval
with ten available samples of ¥, o, and & . Because of the

wide variations of U; . O’d‘ , and G‘é with time as exhibited

in Figures 5, 6, 7, 8, and 9, it is natural to ask whether these
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variations could be limited by altering the number of samples used
to make the least squares fits. This question is answered in the
affirmative in Part 1V, which develops in an approximate manner

the dependence of (T;, > Og » O » G",_ . O;x , and C’E

the number (N) of samples used to make least squares polynomial

on

fits for ¥, o , and £ . The results, shown in Figures 13 and
14 indicate that by the use of a sufficiently large sample size N,
U; . G& , and GE will have constant values over the least
squares fitting interval, while the corresponding standard deviations
of the rate errors G}_ . CQ; ,» and G}é may be reduced to extremely
small values.

Consideration of the use of the methods of Part II1 to produce
operational values of r R d » and £ must take account cf the
time lag from a measured range, azimuth, or elevation to the
corresponding r, X, and é, obtained from the least squares
fitting.

In the least squares procedures of this study no attempt has

been made to compute cross correlation among measured tracking

variables r , &, and £ , although such correlations exist.




A 1 e b R S o i o s i s s g o
. . o N mks i i e gt

II.

ITI.

IV,

Contents

SUMMATYe e caeesovaseensnsecssscososcsaasssnssssescssncassassana
The Least Squares Principle.c.ecieiiicnrnrneeriniecenannoss
Determination of Standard Deviations of
Range Rate, Azimuth Rate, and Elevation
Rate from the Least Squares Polynomials
for Range, Azimuth, and Elevation ci..uvee-vivenaceerncennn
I11. 1. Review of Operations with
Expectation, Variance, and
CovarianCe cesvsevecessosccsesccssensssnsssscsces
I11. 2. Equations and Numerical

Values for G';_ R O—o'( R

Y —
aiig U& (A A RASEEEEEES R R EEE R R NI I RN EEE I I I NIy
~

Dependence of Standard Deviations of
Range, Azimuth, Elevation, Range Rate,
Azimuth Rate, and Elevation Rate on
the Number of Samples Used for the

Least Squares Fit ceeceveecncecsesesscscnececcsosonsnnnsansae

Acknowledgmentsoco----oooo-a--.-o’oonco-o-l--o.-ooo..oo-c.o-o.

REef O ONCES ceeecesrerscscsonosscansscnsssesasosescsscsssesesnsnses

Appendix A - Linear Relations Between Least

Squares Coefficients .iceescveeecesnsesccocnsncnsos

Page

15

15

27

32

39

40

41




e e e e e 8 e e e e % . e i 4 [RORN -

vi

Notation Conventions

Measured values of a variable are distinguished from correct
or theoretical values by a star on the measured quantity. E.g.,
r* is a measured value of range, while r is the theoretical value
of the same variable.

Letter symbols which denote matrices are distinguished from
ordinary variables by underlining the matrix symbol. Further,
upper case letters denote square matrices; lower case letters

denote column (or row) matrices.

E.g. X denotes a 5x5 square matrix
(5x5) .
b denotes a column matrix with five rows.
(5x1)

Matrices with all elements indicated are enclosed with
brackets, and are not underlined. Since no vectors are used in
this study, the underlined symbols will always be understood as
matrices,

In least squares polynomials involving time, t, as independent
variable, the unit of time is a time interval of six seconds or one
tenth minute duration. Thus t=l corresponds to six seconds, t=2

corresponds teo twelve seconds, etc.




I1. The Least Squares Principle
To illustrate the least squares method we shall assume that
over a one minute tracking duration the theoretical range is given

in terms of time by a fourth degree polynomial

r= b + bt + bt + byt> + b,t* (1

Available for the determination of the coefficients bO’ b, s ba,

b3 s b4_ arc ten measured values of range n*; l"a*, v e e e ,)"‘;
recorded at equi-spaced values of time, six seconds apart. It is
convenient to denote these time values by: ‘L'l >2‘t” 31,'“ e s )lo't‘ . -

An observed value of range, l'; s, will differ from the corresponding
theoretical range determined from equation (1) by a quantity

Afj: r;-*— 5 ,» which we call the deviation of the observed range
fiom the theoretical range., Throughout this study a starred value

of a variable, e.g. r*, will denote a measured value of that variable;
the corresponding symbol without star will denote a theoretical

value of the vafiable.

For J=1,2,.....,7 the squares of the deviations may be




written, from equation (1) and the definition of Ar

2 2
(Ak.) = (bo + bt + bitl:' + ba-t? + bit?’ - n“) (2a)
a &
a 8 3 4
(A r;) = (bo +abt+ 2bt g bet?-t—; b,,tf - rz*) (2b)
2 2 .2 3 3 4 - 2
(aw) = (ot 3bt+ Tooti+ oy ti+ b, 1) — 1) (2¢)
= 2 ,2..3 .3, 4 .4 x -
(A \“n) = (Do+ bt + Nb,t, + 7 bgt; + b4t| - ) (2n)

Form the sum of the squares of the deviations

S i(anf - »

J=1




The function S will always be a homogeneous quadratic form in the
coefficient variables b_, b' 3 e s s a0 b .

The measured values of r: rf

recorded at measured values of time. The possible errors in measured

times versus the theoretical values ¢, , 2‘[‘,, 3T, » - o o o ’n't; ,

are considered quite insignificant compared to the errors in measured
ranges.

The least squares principlel/;sserts that the set of coefficients

bo . b' , b&. , b3’ b4_ is best for which the sum S of the squares

of the deviations is a minimum. By a fundamental theorem of calculus

a minimum of S will be obtained when the partial derivatives of S

with respect to bO" b’ , b:l , b3 , and b4 are all simultaneously

zero,
The required partial derivatives are readily obtained from
the forms (2a), (2b),......, (2M) of the individual squared

deviations.

-Lﬁeterence (2), pp. 288-291; reference (8), pp. 242-255;
reference (9), pp. 414-424, and 466-470. Each of these references
describes the least squares principle. The complete proof that
the procedure outlined here yields a minimum of S is given in
reference (8),
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Thus

+ (b, +abt,+ 2'bit+ bty + bt ":)

4 oeer st (botnbit + bt wbE 4L - r,,*)} =0
x®
+ aq(b,»«- abt, + Thti+ byt + byt - r,,)
4o fn‘t‘(b°+ nht, +T\‘bat?+ 1-\3b°t?+'n 41;4_ ';’:‘ =0
%%. = Q{tf( by + bit, + byt + byt + byt - 1)
-3
+ (atb’.(bo"’ bt + aab;t.?'+ fb_.t,a+ :fb;t?- &-: \,

d
et v ettt <o

—a—&ab = a{t.a(bo+ bgt‘ + bat?. +b3t|3 + b 4-t? - r_'*)
3
+ @b, + abt + 2t + Dot + Mt

t.... .+(ntb3(b° + bt + Y\‘Lat?'«l- nab,'t?i-n‘htf- r: =0
%% =1 {t{r( by + b + b+ byt + bt ")
4
+ (3tb(bo + bt + :v."b:,;t:,L + 13b3t,3+ a.‘htf - \—: )

4
oo @t (bo + bty + Wt e bt et =0

(4a)

(4b)

(4c)

(4d)

(4e)
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Equations (%a}, (4b), (4c), (4d), (4e) comprise a set of five

simultaneous linear equations for the unknown coefficients b, ,

bl » by s b3, b4_. These equations may be systematically

*
rearranged, with the observed quantities l":t, r*, T L

on the right, into the matrix form

i n n e 11 7 [
" t'zj t’zzjz t'3 E t: * by W
J=l Jaxy =l FEY!
n n n »” "
3 .4 s\ .5
£);i £} 8) @) ) |[e| |
4= =4 J=1 I8l Jsi
» »n » m %
2\ 2 3\ 3 4 s 6\.6 v
LT YY t-‘Z‘ t.’Z' WL B T W
FEY | FEd| s8d PLE ] JE
n )
3\ .3 4\ 4 5\.6 (3 6 TV.7
TS T YD PR Tl | T I WA
Jei Jzy Jsi 22} Jsy
. ” R4 \18
4 5 e\ .6 7
R YY Ril )7 208 |[ba] |
| sy FLY] =i Y i i

(5)
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24) » .
. _ x _ . % ) Tx — 43\ 33X
where: W, _ZI“J 3 V\/‘—ti'-’rj sy Wo = 'Z’ 5 W3— t-Z’ N
J=1 =1 o=l I
4 - 4
and W4 = t-l Z‘i ’:,‘-‘

The unit time interval t, in equation (S) may be any convenient
value. 1If the variable r is to be fitted over a time duration T,
then t,'—"T'/n. For the data to be examined in this study

T=60 seconds and n=10. It is convenient to take t, as a time
unit and to set 't‘ equal to unity throughout equation (5).
Hereafter all calculations in this study will be made on this
basis. With this simplification, the unknown least squares
coefficients are obtained by inverting the matrix equation (5).

Writing (5) in the abbreviated matrix form

K b = w
(5x5) (5x1) (5x1) (6)
b = k! N

(5x1)  (5x5) (5x1)
where w is the column matrix on the right side of equation (5), b

is the column matrix of least squares coefficients, and K is the

5x5 matrix in (5) with t=1.
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Analogous to equation (5), we may assume for the azimuth angle

a least squares polynomial fit of the form

A = a,+ 2,t + 2,0+ 2% + 57° (8)

with available observed values of azimuth or,* ’ a:{ y o e e e,
0(;: again taken at equi-spaced times t, , at, , STy s o o . ey
lot, . Minimization of the sum of the squares of the deviations

of the observed values from the theoretical curve then leads to a

matrix equation

W
Ka=w=|w )
(5X 5) (SK l) (‘SX ‘) W3
e We ")1'. x
where now W, = S o ¥ , - - Vvl:Z"dj »ee-ey €lC.
=

e N
and K is the same numerical 5x5 matrix which appears in equation (5).

Again the column matrix of least squares coefficients

&N
)

N
i
Q

is obtained by inverting (9)

|
Q
ln'

£

“(sx1)
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so that

a = x' (10)
(5x1) (5x5) (5x1)

Similarly, a fourth degree polynomial least squares fit for

elevation angle in the form

-
_ 2 3 4 (1
€ = Co+ ¢t + Ct7+ e t™ v+ ¢t
over the same time interval %% té/ot; results when the column
matrix of least squares coefficients
C, |
Cl
c = Ca
Ca
Cs
L - (ch)
is Jdeiermined by b
c = _K_-l w . (12)
(5x1) (5x5) (5x1)
n n n
Jtll =1 J:‘

...+, etc. Again K = is the same (5x5) matrix appearing in equations

(7) and (10).

The equations of the form (7), (10), (11) are easily generalized

to the determination of the least squares coefficients for a least




squares polynomial fitting of any degree.

e et e =i Al S W it S M

e i i S . er ey P e YT e

the equations (6), (9), (12) are called the normal equations.

When the least squares coefficients are determined from the

appropriate relations (7), (10), and (12) for a given one minute

time interval, the resulting polynomials (1), (8), and (11) are the

best fourth degree polynomial representations in the least squares

In least squares terminology

sense tfor the range, azimuth angle and elevation angle,respectively,

for that particular time interval,

From the least squares polynomial representation (1) for

range, best theoretical values of range at the data times: tﬁ,

at,, 3t,, ... - ,10¢

may be computed by inserting

t=1, 2,......., 10 in equation (1). Denoting these values of r

by

condensed into the single matrix formula

A

10

(icx)

O W & N O O hWwP -

100

a7
64
(3§
a6
343
51
T29
1000

r ., Fo s oo oy Yio » the substitution proce

I

16
81
128
625
1296
2401
4096

G656l
10000

-
ge Moy o

“(oxs)
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When this array of theoretical values of r is subtracted from
the corresponding array of observed values there results the column

array of residuals or deviations -\-,!’ :

K- h
-k
Ve =
x
Fe — F
[ [1+] 'O_‘ (‘o“) .
Note that
- oA a ;
[} = - = »
V.Y = (\1 - r;»{—(r:_- "':.)+ "“‘*("h - r*n)
_ N/ r\:'
- L\ )
J=i
T
where V,_ is the transpose of the column matrix Vi

The standard deviation of the range errors may then be computed

by (Reference 11, pp. 185-191).

-r

Y, ¥
n - (k+1)

A
"

where k is the degree of the least squares polynomial fit, (k+1)

(15)

(16)
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is the rank of the set of linear equations (5), and n is the number
of observed values of r used to make the least squares fit. Similarly,
the standard deviations of azimuth and elevation errors may. be

computed by

(17)

(18)

In each of the formulae (16), (17), (18) the number n-(k+l) is
the number of degrees of freedom. In this study least squares fittings
are made over a one minute interval, with n=10 available sample;
per minute interval. The formulae (16), (17), (18) are not exact
formulae; rather, they are "Asymtotic Estimates'" (Reference 11,

p. 188) for the standard deviations O_ , Og

x ° and (3'6 , Since the

sets of recorded values of range, azimuth, and elevation constitute
only finite samples taken from infinite populations of the measurgd
variables,

The procedure for determining the coefficients in the leéast

squares polynomial fittings by minimization of the quantity S
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defined by equation (3) has been stated here for unit weights on
the individual (Af})l. It is possible to generalize the procedure
so that different weights (other than unity) are assigned to the
various (th)% However, such additional smoothing is not considered
applicable for this study.

The least squares process outlined here has been applied to the
Woomera station FPS-16 radar data recorded in the MA-6 mission.
The necessary computations were performed on the GSFC 7090 computer.
The least squares fittings of range, azimuth, and elevation were
made with all least squares polynomials from degree two through
degree five. The standard deviations of range errors, azimuth
errors, and elevation errors are summarized in Figures 1, 2, and
3. The results with second order polynomials were quite unseticfactory
and are therefore omitted in these figures, The results in these
three figures show that computed values of C. , T, , Cg are
strong1y>dependent on the degree of the least squares polynomials
used to fit range, azimuth, and elevation.

Table 1 is a typical IBM 7090 printout for a fourth degree
least squares fit of range, azimuth, and elevation over a one
minute tracking interval, together with the computed standard deviations

of range, azimuth, and elevation errors.
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The results depicted in Figures 1, 2, and 3 are to be regarded

as average standard deviations of range errors, azimuth errors,
' and elevation errors over a one minute tracking interval based

on least squares fitting with ten samples per minute. The methods
of Part II1 show that the standard deviations Cp , g, Cg,
actually vary with time over a one minute interval of least squares
fit. Part IV shows that this dependence on time may be reduced
by using a larger sample size for the least squares fit.

The standard deviations presented in Figures 1, 2, and 3
are intended to illustrate those errors in range, azimuth, and
elevation which may be represented statistically. It should not
be inferred, however, that these errors represent the entire
errors in range, azimuth, and elevation. A range tvaclking

will have dynamic steady state system errors of the form (Reference 5)

R : . G
s = Ly By R R

I+ Kp | Ky Ka Km

. where l(b, F(v , F{a,....etc. are gain constants of the tracking
loop and R;, R, , R, ,....etc. are the input range and its time

derivatives. The design of a rarge tracking system attempts to

limit such errors with respect to anticipated forms of the input
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range Ri(t)° Practical limitations require the termination of

Gm)
the expression for 'SSS at a definite Rll » which involves
the assumption that derivatives of R(t) beyond the m th are

negligible. Unfortunately, this condition may be violated for
many range inputs R;_(t) which are high -degree polynomials. This
seems to be the cause of the unreasonably large values of U, Uy
and Ug shown for certain time intervals on Figure 4. Thus,
there is always the possibility that a particular range input

Ri (t) will result in steady state error Egg not only larger
than the design specification but growing with time. Analogous
expressions apply for steady state angle tracking errors.

The strong dependence of T, , Uy , and Ug on the shape
of the range, azimuth, and elevation vs. time curves is shown in
Figure 4. 1In this figure the standard deviation of azimuth error,

U& , is omitted for the time period from one to two minutes; the
azimuth data for this period varied too radically to be fitted

with a fourth degree least squares polynomial.
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IIT. Determination of Standard Deviations of Range Rate, Azimuth Rate,
and Elevation Rate from the Least Squares Polynomials for Range,
Azimuth, and Elevation

1. Review of Operations with Expection, Variance, and
Covariance
The standard deviations of range rate, azimuth rate, and
elevation rate may be computed from the corresponding least squares
representations for range, azimuth, and elevation on the assumption
that the time derivatives of the least squares fits for F, o,
£ , are reasonable representations for the theoretical values of
¥, & , and O . The determination of og, G'&, and O"é by
this method requires the application of certain elementary theorems
and operations dealing with the expectation, variance, and covariance
of random variables. It is pertinent to review the necessary operations,
theorems, and definitions here. The material is taken from reference
2. |
If X is a random variable, we denote by E(X) the expectation

of the random variable. If the first probability density function
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f(X) of the random variable is known, then

[ -]

E(x) = fo(X)dX =y (19)

=00

the mean of X, and

20
< 2 < -~
E(Xv) = [X 'f(X)dX = Oy + My (20)
<00
1f X , )(2 are random variables then the expectation of the

sum X' + X; is (Reference 2, p..165)

(X + X)) = EX) + EXa (21)

The covariance of two random variahlec ¥ 3nd ¥, wiitien

cov (X,Y), is defined by (Reference 2, pp. 169-170; reference 3,

p. 356)

cov(X,Y) = E(XY) - EOXOE(Y) (22)
Since E_(X) :/Ax and E_(Y) :luY the last term in equation
(22) is /"X/”Y . 1In particular

o (X,X)

E(x") - [E(X)]:L ©(23)

L

X , the variance of X

e e e e e )
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Computation of the expectation term E(XY) in equation (22)
requires in general knowledge of the probability density function
of the product XY. In practice this difficulty may be circumvented
provided sufficiently simple algebraic relations exist between the
two random variables.

It will be useful for the purposes of this study to determine
the covariance of two random variables X, Y which are linearly
related. Let the linear relation be Y=aX + b where a, b are scalars.

Then, by the definition for covariance

cov(X,Y) = E(aX*+bX) - EX)E@X+b)

= a(olepy) F iy — p(apy+b)

= Aa G;( ' (24)

Thus, if b, , b', e e e e e ,bK are a set of least
- squares coefficients, it is established in appendix A that any

coefficient bF’ may be expressed linearly in terms of bo in the

form

bp = (Wo)bo + Cp (25)
Wp




where Wo

Wp

cov( .0 )

Further

COV( () J)

and Cp are constants.

- I8 -

(s2)

oo aorce (e )
= [ww)b (et J°C)b°+ ]

- [(v_b@)bo +C,] E[(_‘&’?)bo-k CJ]

a a2 2
W, w,C; C; .
(o o) (i G+ G

- (e -0 g+ )

- vhf‘)(fe‘
W, W °

s e 07 R ks bt .

Then, by application or (24)

(26)

27)
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where {(i.j) are any two integers in the set (0, 1, 2,.......... k).

The constants \mb , V%' , MG are defined in terms of the data

that is being fitted. For a least squares fit of range W, ,.

W,

i, » and Mﬁ are defined by the tormulae

e n
L % J X
v =) KR W=y @R, w} e
V=1 V=l V=i

*®
where the kﬁ— are measured values of range recorded at equal

time intervals.
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if ( X, )(I P XK ) is a set of random variables the
complete variance-covariance properties of the collection of random

variables may be conveniently and systematically expressed by the

covariance matrix

_COV(XO,XO) cov(xo,x,) .. c.ov()(o,X,‘)j
cov(x.,xa) cov (X, ,X.) ... COV(X,,XK)

.
- . [ .

@)
i

(28)
_°°V(XK:X0) C°V(XK,X1) - .- COV(XK)XK)
2 2 .
where the diagonal elements are respectively (. g, e o s o
o XO ’ X. ’ »

0-)2& It should be noted that C is always a symmetric matrix since

cov X”X,) = cov(XJ’X‘.) :

The two expressions (26) and (27) permit computation in terms cof
U'éo the complete covariance matrix for a set of least squares coefficients

bo ’ b| A bk , considered as random variables-z-/. Thus, when
K =4 the complete covariance matrix of the random variables bo- b, s

. - - ,bq, may be written

2/ To be rigorous, we mean the random variables Ab s Ab; s ° )
AbK , the deviations of b,, b,, » Ex from their means. However,
the variance-covariance properties of Ab,, ab, . » 4b (about
zero means) are the same as the variance-covariance properties of b,,

By » - - b . Thus var(b;)=var(Ab) ; cov(ab,ab)=zov(by,by) 3
:ov(Ab;,Abﬁ::OV('bL,bj) ; etc. For this reason, in the statements
beginning with equation (26) and hereafter, we omit writing the A
symbol in such expressions involving the b’s .




W, w, wW.
I =9 N2 2 W
Wi Wy Wi Wy
WO ( Wo >2 W, 2 Wol \V v/ -
o G W Wy, W,
]
C=g? % (e )“ wet W
el P
Wy Wy s Wo) Wy
W3 Wy W) Wa Wo W W3 W4
-3 a < 2
wo Wo Wo Wo Wo
W4 W4V\/' W4 Wz W4 W3 Wq. -J

The collection of least squares coefficients is considered as
a collection of random variables in the following sense. Consider
a time interval for which there is available a large number of

data samples of one variable, say range. Let the collection of

(29)




e e o Rl Rt e ke e s e

- 22 -

values of r be divided into sets as follows:

O IO ¢
St R,y - - e ey

. W@ ) Q)
S T N T L o
- ) .()) N - Q) . - . L4 - - .(2)
N A R £

for a given set S(; , make a least squares fit of r in the form

) )

Y, x
Fr=>b + bt+ .

- - ~+b, t

For each set of data values S(: there will be a set of least
squares coefficients bg:), b?),........, b(:) . Thus there
will be A different values of bo R A different values of b. s
esecececscsnas , A different values of bK . Hence, each coefficient
bp will have a probability density function @(bp), and there
may be computed for each bp a standard deviation G .

In this study it has been found unnecessary to compute the
various standard deviations U-bp ; we establish, rather, relations

(equations 2€ and 27) that reduce the problem to the computation

of a single sigma, i.e., CT:D , which is then determined from the

data of Part 11.
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Finally, if )C . )( seeccccs ....,.X; are random variables,
a fundamental theorem (Reference 2, p. 170; reference 6, pp. 179-180)

states that the variance of their sum is

Var (X,+X_.‘+.--.+Xk) = Var()(,)-t— Var(){z)-f- R
.« - - -+Var(Xk)

+ :ZZ cov X‘,)(,) (30)
GJd

where the summation, 2 , is over all pairs of integers (i,j) for
o7
which {(#£jand 12 {¢k , I&£jS k.
The variance of (aX + b) where X is a random variable and

a,b are constants is (Reference 6, p. 179)

Var(a)(-f—;:) = aQVar(X) = a:zo;(z'

W, W,
Thus, if = o + ( ation 25) where —2
u bp ( P) bo CP equ ion 25 r WF

and CP are constants, then

Var(bp) = G-bap'

&
(h’.)cfa. 31
We

for P= o
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To illustrate the application of these principles for operations

with variance and covariance, if

F = b, + bt + bt™+ b3t3 + b4_t4 (32)

is a least squares fit of range over a given time interval and

b, + abt + 3byt  + 4bgt

(33)
is a suitable representation for ¥ , then errors in range and
range rate are expressed by
Ar = Ab) + tab, + t'ab, + tab, + t'ab, (34)
AF = Ab+ atab.+ 3t'aby+ at’Abg (35)
Since time (t) in equations (32) and (33) is not a measured
variahle there 2vz nc ariois in i, and equations (34) and (35) are
based on this restriction,
Application of the variance expansion (30) to the sums in the
right members of (34) and (35), with time and powers thereof treated
as scalars then yields
< a :. 2 3 =
O;:U‘bo +t0'b+t +1:f"4
| -’-Q‘tcov( b)-i-ut c.:N(b b. +2t3cov/b b-)
+ at cw( ,4)+4tmv(b, bz)-f t "ov(b b-) 36

“l’ 2T COV(b')bq_)'f -(t OV b ’b ‘)+2t~o‘l\tz)b )
+ 2t cov(bs, be)
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and

2 2 “_2 4 2 6 2
Te= 0y +4tg, +9to, + 16t o,
+4t cov(b,,b) + 6tcov(b, ;b)) + &t cov(b,by)

4
+1atov(by,b,) + 16t cov(b,,b,) + a4t Tanby,b,) 3D

The appropriate covariance and variance terms in the expressions
(36) and (37) may be taken from the covariance matrix (29). The

resulting formulae for O':'_ and 0"::' are

2 2 < & 2) .3
g. = O + 2Wo t+{aY% (_"_"g)}‘t aw, 2wh 3t
“r bo[l W wa b + _awa Wi

HW t vt T +i_W.w4+ vws}

W4 w|W3
s, ) 6 a 7 2.8

412 +(L"2.) t 4+ W t 4 (M)t (38)
WWe A\ W: Wawi Wy

2,6
+24ws T 4 'aﬂi\)t (39)

e et i b e b =+ L R e ST
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Corresponding formulae apply for

i O iy
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2. Equations and Numerical Values for O';-_ s O'g( s O-é
The processes outlined in subheading 1. may now be applied

to write out expressions for the standard deviations of range rate

errors, azimuth rate errors, and elevation rate errors for a system

in which range rate, azimuth rate, and elevation rate are taken

as the time derivatives of the least squares representations of

range, azimuth, and elevation. The resulting formulae are for:

(a) Third Degree Least Squares Fit

- - -l F3
a 2 <
g.= g, (X"—ﬂ)  dwt g 4(&’@) AN
PP fw Wy Wy Wa WiV

v L3 + 4

+ law, ¢ +3(_Wo_t (40)
W3.= Wy
4

2 2 W2 &
0;'—'0_60 ) +Mt+ “_\:/Q+(_0_) t

2 6
+ W t + L"z.) t 41)
Wan Ws

P—— . e 4 i At 1 e R o Nt
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(b) Fourth Degree Least Squares Fit

W/ 7 ww w! T wiw,
8wy 4 1awyle® g(yﬂ)’;r 16 W) +*
M% %W3 Ws W2W4
6
+ 24w Wa) + (a2
W3W4» W4_
=gt aw, + [aW | [WoV +2
i + W, + W, + (w,)
4.2 w2) 4
-L(l (R R.M)‘_i_(_‘_t_ '.+/\—'a\+2'"/ T
Ws w,v\(J LW‘} (""1) WW
2 5 - ) .6
+ 1 2W% + aw, ts (Na) w, |t
Wy Wy WoW Wi/ wawe
7 2 8
e R ) ¢ (43)
W3V/+ W4
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Fifth Degree Least Squares Fit

2 2
0y =0, (-"1’4) + X%t +{4/%) ponte
Wi Wi Wa Wa/ 7 wiws
+ 8 Wy uzwa t+ 9/\«4, 16 T, 10 Wy t"
W, w4 Wy Wa \w3 Wywg | Wi
2} ,6
+ 20 Wy + WBWy ‘t+ 16(“’:) + 0% (¢ (44)
<. 8
+ v ¢ zs(xv_o_)t
W4W5 W5
(45)
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Almost identical formulae apply for G;( , T, G"é .

2 ' 2 a 2
O'Evuth GEO replaced by an and O'CO .

Each pair of equations in the group (40),.........,(45) may

o = o\ R (46)
0r = o)/ R(t) (47

k
where F"( + ) and F;( +) are polynomials in the time. For a given

be abbreviated to read

interval ( 1% 1t £ /0 ) of least squares fitting GEO is a

constant and we may take

o = ( U;)an (48)
o (JRE))
\V ! }Mcam
where C—,'m“is the standard deviation calculated numerically in
Part I. With OEO known, G;_ vs. time over the interval (£t £ 10 )

may be computed with (47). Formulae similar to (48) apply for U&o

and O . 1In each case (W/F;('t) )Mcan is calculated
arithmetically by taking values of -\/ Fi(t) at several points in

the interval ( 1 £ t £10).
When this procedure is applied to the Woomera Station Data

of MA-6, the variation of 0'; , O'& , and OE with time is
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as shown in Figures 5, 6, 7, 8, 9. The averages of Oy » G-'é( , and
U—é (with respect to time) are shown in Figures 10, 11, and 12.
The extreme dependence of calculated O';:, O&, and (Té on

time illustrated in Figures 5, 6, 7, 8, 9 resulted from the fact

that a small sample size (10 per minute) was used to determine the
least squares fittings of range, azimuth, and elevation. Values

of Op, Oy » and 0}: should be constant, if these quantities are

to be useful for engineering purposes. 1In part IV of this report

it is shown that the difficulties presented in these figures may be

overcome by using a larger sample size to determine the least squares

fittings of range, azimuth, and elevation.

i i . e
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IV. Dependence of 0:_ ’ O& s OE ’ U; : 0;( ’ GE on

the Number of Samples Used for the Least Squares Fit

The methods of Part III, when applied to the calculation of
O_;; s G.o'( . C'a for range rate, azimuth rate, and elevation
rate, showed that these standard dev>iations vary rather radically
over an interval for which F , o, €, have been fitted by least

squares pclynomials. Since all of the calculations for Parts Il

and III are based on least squares fitting with ten available

samples per minute, it is natural to inquire whether the values

of 0; . 0"& R Cl"é_ as well as 0;., O; . OE could be
improved by using a larger number of samples. To answer this
question, it will suffice to examine only the fourth degree least
squares fittings. The results of this part are not dependent on
Woomera station data and will apply to any tracking station.

The formulae for U';.l and O';'.z for a fourth degree least
squares fit of range are (Part 111, equations (42) and (43)):

o= |1 4 AW W, £ + 4% awgs |+
= + o 2= +
LY w lw, (W.) Wy | W W

2 1) 4 )5
WMy, (W), 2w, (T W, | aw, (t
+ {Wq. + (W;)+ W, Wg} + {WAW4-+ W

8
v~/’z + 4w + (w )21:

(49)
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3 a o3 2
2 n
o =UB:(£V_Q.)+4W t+(4_\‘!g)+ér/g t

r W' w‘ We L W;‘ wl w3
W, lawile? fo(wo\, tews| +*
+ + +
(50
24w, t° 4 16 Wo) t°
Wa Wa

Recall that these formulae hold over a one minute interval
over which range has been fitted by a fourth degree least squares

polynomial.

The coefficients Jﬁﬁ, !ﬂ; secccas ...s €tc. in equations
w; ,W; ,
(49) and (50) may be written as approximations in terms of the
number of samples. Consider the fittings for range when the total

variation of r* over a one minute interval is not large. N is the

number of values of r* used to make the least squares fit.
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N
*
W, -;5 . N _ N 2
Wy ‘g-* h { T T NNEY . TN+
Jr J R
J=t J=4
N
*
My Z.m " . N = N = __6
Wy O MN’rg(aNH) (N+1)2N+1)

- |
wo_ir-i. N 4

{N(N;:l)}" NN+

&
Tk
e
n
[~z

J=| J=1
N
b 4
| Y ¥ ,
Wy _ %5 - N _ N 5
Wi ex N o7 ININFD@EN+) su(w-c}
* i«‘"'ﬁ > { A }{ 5
4= i=i

30
(N+EN +1) { 3NN+ 1]

-3£rom reference 10, p. 387:

N N
j= NN+i) 2 - NN +2)

3= {N N,:' }; 3 iﬁz {N(N’rel)WH) 3N(N;I)-I}

| Jj=1

Tk

o
"
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° VW:L - 12
WiWy (N+1)*@N+1)

Wo . 4 . 24
W,Wa {(N+I)(:N+I)}{N(N+|):‘} — ON(N+H)@N+)

When all of the coefficients in equation (49) and (50) are
approximated in this manner in terms of the number of samples, N,

E3 o
the resulting approximations for Cr  and C: are

2 2 2
g, =0, 4 (3 4ﬁ-} T
r by [‘ ¥ N+t t+ {(NHX:LNH) + N+ )™
3

24
N N+a)~ (N'H) (1N+|)I
e }t‘"
* N(NH)‘(QNH) (N*") (-N+')" N(N+1)° (51)
5 120 6
+{ N(N+c)3( N+|)}t+{N‘"‘(N+|)4 N N(N+1)@N+1)~

100

+{ (N+DJG¢N+I)) £ {N"(NH)“(Q.NH)} ¢
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_ 4 48
% =% ezt {(NH?(,:NH) }t

+{Q~lﬂ)’"(:.:+t)" + ‘Nﬁ‘f}t

448 £3
i { N (ON+)(N+y )’5"

_ 144 + 640 }
N*(N+1)* N N+ (N +1)°

+{N°@Ni3€N+b"}t * {Na(aNHL)gZSH)“'} el @

t4

-+

In these formulae the further simplification ENWH)-I = 3N(N+l)
has been made. The formulae apply over an interval ( 1€t é\0)
for which the range r has been fitted by a fourth degree least

squares polynomial,

The approximation formula (51) applies to Ual when G;a is

a
replaced by Gp  , and to Gg when Ci;o is replaced by OJg

e

2
Similarly, the approximation (52) applies to C"o-( when G;a 1is

-3
replaced by 0—‘io , and to 0'5 when OBO is replaced by

OEO
Figure 13 illustrates the dependence of the average values
of normalized standard deviations %-g. 9% , and GG
-2 an %,
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on the number N of samples used to make the least squares fit of

F, &, or E . As formula (51) implies, for large N -%%% .
o
Sa , and Se become independent of time and Lim (G?-) = 0_60
oz' UEO N—’@
L (03) = G, and Lo (o5) = oz, .
. > od
Figure 14 jillustrates the dependence of the average values of
normalized standard deviations E—L ’ Cs , and .G_..é..
Tbo Gae Oco

on the number N of samples used to make the least squares fit of
range, azimuth, or elevation over a one minute interval. It {s
readily observed that the normalized deviations of range rate
errors, azimuth rate errors, and elevation rate errors may be

dramatically reduced by increasing the sample size used to make

the least squares fitof I , & , or & . 1In fact, from formula
{s23,

Lim _0_1) L_rm( ) Lim (gg_ -0

N—»>oo\ % N->\ TG, N-»o00 o,

The formulae (51) and (52) used the assumption that the range
of variation of range, azimuth, and elevation over a one minute
interval is not large. 1In case this assumption is not feasible,
the same procedure used here may be employed, but with an additional

% =

’-Max
'.MIV\

parameter in the expressions for the

o b Sr e




U]

- 38 -

ratios JeéL s je%i , etc. The relations developed in this part
!

are intended to illustrate approximzte dependence of the errvor

standard deviations on sample size N.

When the results of this part are compared with the material
in Part III it is clear that for N sufficiently large (and only
then) the off diagonal elements in the covariance matrix, equation
(29), approach zero; in addition all diagonal elements except that
in the upper left hand corner become vanishingly small. Under
these circumstances, the error standard deviations O, Ty, and

Og approach constant values OEO , Gao , and Ozo , respectively

for the interval of least squares fit.

Jééu—a»d A l%l«lw
Howard H. Brown
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Appendix A
Linear Relations Between Least Squares Coefficients

The computation of covariance elements in the covariance matrix
of a set of least squares coefficients is considerably simplified by

taking advantage of simple linear relations which connect any pair

of least squares coefficients. These relations will now be derived

for the case of a fourth degree least squares polynomial. The

results extend by induction to a least squares polynomial of any

degree,

For the case of a fourth degree least squares polynomial fit

for range we have

. ‘. . . 2 s 4
r = D, 4 bt 4+ bt 4 bt + byt (A-1)
The least squares coefficients bo . b' . b:.' b. ., b4 are
determined by the relation
-1 T I ‘
bo ku Krz Kz Kig Kis Wo
b K k k k'-‘ Kk w
! 2 22 23 z 25 \ (4-2)
ba| =1 Xa ke Kaa Kia Kis| | wy
bs Kiﬂ- k; K3+ K4_4 K4,5 W3
] ba L“ns Kas  Kys Kas  Kss| | wy




‘I

where:

x .
The quantities Frj (J= 1 z,.
recorded at equi-spaced times.

of the 5x5 matrix which appears on the left side of equation (5).

hal n
= *
(I er
n mn
= E 3ox :.E 4 ¥

S e b AT e B e . st s e,

w=) Stt

J=1 J

-~

J:] J:‘

ir W= )

.-,¥) are the measured values of range

The 5x5 matrix ( K;; ) is the inverse

The forms of the indices on individual elements of the matrix ( ijl

in equation (A-2) follow from the fact that the matrix ( Kyj) is a

symmetric

matrix.‘

When the matrix equation (A-2) is written out for the individual

coefficients the following linear equations are obtained

5

b

—
——

KiaWo 1 KW, + KWy + Kegwa 4 Kyowg

KiWs 4+ RaaWi + KaaWp - KaWz - KWy
= Ko + KeWi 4+ KyWi - keWa - Kegwy

= KigWo + KosWi + KasWa - KW + KWy

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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Elimination of K,; between equations (A-3) and (A-4) yields

2
b = WD) b, + ( Koo Wy + KpuW, + KogWy + KygW, — %’vg Ky
Wi SRR
W, W, W,

The last parenthesis term in this equation is a constant. The relation

between b, and bo is therefore of the form

- [ W, A-8

b, = ( _w_o>bo + C, (A-8)
|

Similarly, elimination of K;a between equations (A-3) and

(A-5) yields the linear relation

b, = (—V—vw—"z)bo + G,

(A-9)
Elimination of K.,3 between equations (A-4) and (A-5) yields
. . 2
_ WOV\/. K‘a -Wl Kzz _W1W3K24, -W|W4,k25)
Wz_ WZ Wz Wz N 4
= (ﬂ,_)b, + Cy, (a-10)
w

where CM is a constant,.

Proceeding by induction from equations (A-8) and (A-9), it

may be shown that any least squares coefficient bp in a set of
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least squares coefficients (bo,b,, b:‘, . . .) may be expressed linearly

in terms of bo in the form

be = (_\%Qbo + C, (A-11)

For a fourth degree least squares fit with least squares
coefficients (bo, b,,. . -,b4), index P in (A-11) has the values
1, 2, -3, or &4,

Further, equation (A-10) may be generalized so that any least
squares coefficient bp is related to any other lease squares

coefficient bl (L #P) of the same set by a linear ~equat:ion of form

= Wl.‘ C A-1

where CPI. is a constant for each pair (P,l ).
The linear relations developed here all follow from the fact

that the matrix (K{;) in (A-2) is always a symmetric matrix.




Table I

STANDARD DEVIATION - 27949006 00

__VHE_FOLLOWING DATA HAS BEEN FITTIED 10 A PGLY. OF DEGREE Q& T
N=— 010 N- 010 F- 000000000

3491504 128211 094583380
3513994 135037 091533193

TTTHE INPUT PARAMETERS “ARE. K- 004
96109 4TEXVL 600901 1718 C60000
96109 4TEXVL 600901 1718 120000

4TEXVL
©TEXVL
4TEXVL

600901 1718
600901 1718
600901 1718

360000
420000
480000

96109 4TEXVL 600901 1718 180000
96109 4TEXVL 600901 1718 240000
96109 4TEXvVL 6C0901 1718 300000

3538111 141730
3563996 148340
3591743 154866
3621402 161259
3652977 167418
3686429 173194

000000 000 1
‘000000 000 1
000600 000 1
000000 000 1
000000 000 1
000000 000 1
000000 000 1}

000000 000 1

0 088628380
085884941
083319314
080948375
078789438
076860260

ATEXVL
4TEXVL
. __THE FOLLOWING

600901 1718
600901 1719

96109 4TEXVL
96109 4TEXVL
96109 4TEXVL

96109 4TEXVL
96109 4TEXVL
96109 4TEXVL

6C0901 1719 340000 0399980 188940

540000
0"0000

3721612 178388
3758576 182753
DATA HAS BEEN PROCESSED POINT FOR
600901 1719 0A0000 0196980 186440
600901 1719 120000 0236670 189130
600901 1719 120000 0277210 190810

600901 1719 240000 0318270 191440
600901 1719 310000 0359310 190780

075179032
073764380
POINT ]
072629350
071788790
071253460
071029040
071119650
071523480

000000 000 1
000000 000 1

000000 000 1
000000 000 &
000000 000 1

000000 000 1
000000 000 1
000000 000 1

796109 4TEXVL 600901 1719 420000 0440060 186050 072235920 000000 000 1 T
T 96109 ATEXVL 600901 1719 4°0000 0479000 182200 073247590 000000 000 I~
T 540000 0516470 177680 074546070 000000 000 1
0N0000 0552310 172290 076116970 000000 000 1 ~

96109 4TEXVL

96109 4TEXVL

600901 1719
600901 1720

4] C n=C NI EAE
T 19697999 02 19697999 02 71525573-06 S51159075-12 '1 [
T 23666999 02 23666622 02 ITTITBLI9-03 14226389-06 Y T T~ T T oTw
27720999 02 27722790 02 -17910003-02 33499461-05
T 31826999 02 31824284 02 ?7146339-02 10719183-04 - T T
© 35930999 02 35930549 02 4&5013427-03 10921804~04 AZIMUTH TToTTTT

T 39897999 02 40002685 02 -46858787-02 32879263-04
- 44005999 02 44003452 02 ?5463104-02 39362960-04
47899999 02 47897275 02 27232170-02 46778871-04

51646999 02 51650234 02 -32353401-02 572%6238-0%
- 55230999 02 55230072 02 92744827-03 - 58106456-04
" STANDARD DEVIATXCN - 3409001v5-02

O'a(MILS) 1745 X N034

o 0-C SUM(0=CYoe
"’/l86&3@99”021“18642040”02"19593235102__38389500v05
" 18512999 02 18916380 02 -13810138-02

'15270204-06

BTB0-02 26034365-04%
- 19143999 02 19138041 02 =9583187-02 61535926-04

19077999 02

19074725 02 12744407-02 7T72257888-04

T ELEVATION

- 62576-02 76907335-04
~ 185604399 02 18608919 02 -39198398-02 92272479-04

17228999 02 17232485 02 -34861564- -02 " 21191383-03
- " STANDARD DEVIAT!CN - 65102048-02

T 18219999 02 18224363 02 -43635338-02 11131293203 |
—0Z 19976054=03 |

O’G(MILS)—I'/ 45 X 0065

\

[+] 0-C
- 72629348 05 72629403 05 -54687500-01
71788788 05 71788744 05 43945312-01

SUR{O-Clees
29907226-02
49219131-02

b o e -

_RANGE _

3-01
~ 71029038 05 71029320 05 -28222656 00 ~ 14322853 00
71119648 05 71119764 05 -11621093 00 15673351 00
< - 77 00
72235918 05 72235579 05 33984375 00 2722425% 00
13247588 05 73247426 05 16210937 00 29852199 00
46567 05 ~%99023%3 00 54754638 00

76116968 05 76116768 05 20019531 00 58762454 00

STANDARD DEVIATICN - 34281906 00

7 Oy METER)=.9144X .34

,,,,, S
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Figure | Standard deviation of range errors vs
degree of least squares fit of range.
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Figure 2 Standard deviation of azimuth errors vs
degree of least squares fit of azimuth.
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Values of Of should be constant. The variation of O with time
indicated here results from the small sample size (I0 per minute)

used. For improvement in Or via use of larger sample size see
discussion in part I\,
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Figure 5 Variation of standard deviation of range
rate errors over an interval of least squares
fit of range. Values of r determined from
time derivative of least squares fit of range.
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indicated here results from the smali sample siza (IO per minute)
used. For improvement in O¢q via use of larger sample size see
discussion in part L.
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Figure 6 Variation of standard deviation of azimuth
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fit of azimuth. Values of a determined from
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Values of Og should be constant. The variation of Og with time
indicated here results from the small sample size (IO per minute)

used. For improvement in Og via use of larger sample size see
discussion in part I,
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values of O¢ should be constant. The variation of Og with time
indicated here results from tha small sample size (10 per minute)

used. For improvement in O¢ via use of larger sample size see
discussion in part I,
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Figure 8 Variation of standard deviation of elevation -
rate errors over an interval of least squares
fit of range. Values of € determined from
least squares fit of elevation.




Values of O¢ should be constant. The variation of O¢g with time
indicated here results from the small sample size (IO per minute)

used. For improvement in ¢ via use of larger sample size see
discussion in part IN.
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Figure I0 Average standard deviation of range rate
errors vs degree of least squares fit of range.




0.10

(34
@
>
T g I
\\
66
0
3 4 5
Degree of least squares fit of azimuth
Figure Il Average standard deviation of azimuth rate

errors vs degree of least squares fit

nf nrimuth
-we A N EREL" R NI

[ 4




0.10

mil/sec

\Y4

o

e e e e e e, i T T ——

4 5

Degree of least squares fit for €

Figure 12 Average standard deviation of elevation rate
errors vs degree of least squares fit of elevation.
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determine fourth degree least squares fit of
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